

sdmay21-41

Megan Ryan

Kristin Rozier

Team Members/Roles

sdmay21-41@iastate.edu

Team Website

Revised: 10-25-2020/0.02

IoT Security Validation

DESIGN DOCUMENT

1

Development Standards & Practices Used

Software: SV-COMP, Ubuntu 2004, ABET

Summary of Requirements

Ubuntu 2004 VM machine/x86_64-linux, Ubuntu 18.04, a memory limit of 15
GB (14.6 GiB) of RAM, a runtime limit of 15 min of CPU time, and a limit to 8
processing units of a CPU.

Applicable Courses from Iowa State University Curriculum

SE/CPrE 185, COMS227, COMS228, COMS311, SE339, SE329

New Skills/Knowledge acquired that was not taught in courses

List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

Executive Summary

2

Table of Contents

1 Introduction 4

1.1 4

1.2 4

1.3 4

1.4 4

1.5 5

1.6 5

1.7 5

2 6

2.1 Task Decomposition 5

2.2 Risks And Risk Management/Mitigation 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

2.4 Project Timeline/Schedule 6

2.5 Project Tracking Procedures 6

2.6 Personnel Effort Requirements 7

2.7 Other Resource Requirements 7

2.8 Financial Requirements 7

3 Design 7

3.1 Previous Work And Literature 7

3.2 12

3.3 12

3.4 Technology Considerations 8

3.5 Design Analysis 8

3.6 13

3.7 13

4 Testing 9

4.1 15

4.2 15

4.3 16

4.4 16

5 Implementation 10

3

6 Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

List of figures/tables/symbols/definitions (This should be the similar to the

project plan)

4

1 Introduction

1.1 ACKNOWLEDGEMENT

If a client, an organization, or an individual has contributed or will contribute significant assistance
in the form of technical advice, equipment, financial aid, etc, an acknowledgement of this
contribution shall be included in a separate section of the project plan.

1.2 PROBLEM AND PROJECT STATEMENT

The Internet of Things (IoT) is becoming more and more a part of people’s everyday lives. Devices

such as locks, cameras, and smart-speakers are just a very small view of all the ways our lives are

going online. With all of these devices having important roles, being located in private places, and

gathering loads of information, the security of them is much more prevalent as it would be

problematic if it got into the wrong hands.

There are already some ways that the security of the code behind these IoT devices is being tested.

However, there are a lot of security properties that aren’t being as thoroughly checked. One of the

ways is through a program called SV-COMP. SV-COMP helps compare different software

verification tools to help find which tools will suitably satisfy your needs. Our project is developing

another version of SV-COMP to focus on IoT device code and test different IoT libraries.

The final goal of this project is to have a working version of SV-COMP that is able to test many IoT

libraries, and from that be able to confidently verify the security of different IoT libraries. In doing

that, we will have Iot code benchmarks for others to use to secure code with their own validation

tasks. A further goal, if time and resources persist, is to combine the secure code we find into an

IoT library that is trustworthy and reliable.

1.3 OPERATIONAL ENVIRONMENT

Ubuntu 2004 VM machine/x86_64-linux, Ubuntu 18.04, a memory limit of 15 GB (14.6 GiB) of RAM,
a runtime limit of 15 min of CPU time, and a limit to 8 processing units of a CPU.

1.4 REQUIREMENTS

The software can be downloaded, it can be replicated and evaluated.

The software can be archived in a ZIP file, with a directory within.

The software should not require any special software on the competition machines; all necessary

libraries and external tools should be contained in the archive.

The software can report its version.

Remains free of unnecessary data, with only the core code and descriptions within the code, free of

things such as test files.

5

1.5 INTENDED USERS AND USES

The intended users of this software will be developers and academia of IoT.

End users will be able to use our developed benchmarks to test their own IoT code through
validation tasks in the SV-COMP environment.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

- Only using Java and C IoT code
- BenchExec will run smoothly on a different Ubuntu version
- Verification tasks will run correctly on BenchExec

Limitations:

- The monetary cost to produce the end result shall be zero
- VMs are limited to one core on 8 GB of RAM running Ubuntu
- We are limited to the end of spring semester to finish the project

1.7 EXPECTED END PRODUCT AND DELIVERABLES

List of several well rounded IoT libraries

These IoT libraries will all come from open source code on the internet. A well rounded

library will be one that does not have a profusion of dependencies in it. Some of these

libraries may be slightly modified to make them into well rounded libraries. This list will

then be run through IoT verification tasks to see how secure they are.

A running instance of SV-COMP

This instance of SV-COMP will be set up on VMs provided by the university. The instance

of SV-COMP will be able to run the IoT verification tasks on the open source IoT libraries.

Verification tasks to run against C and Java IoT code

 This set of verification tasks will be focused around the security aspect of IoT

devices. Ideally, this will include both the C and Java languages. Part of these may come

from the SV-COMP benchmarks repository, whereas others will have to be written on our

own. These tasks will cover a slew of security issues with IoT devices, and will not focus on

any one particular aspect/weakness.

C and Java library consisting of code that has been verified using IoT verification tasks

This deliverable is a bonus one that we would like to do if time allows it. After testing all of

the open source IoT code with the verification tasks by using SV-COMP, the good code will

then be compiled into a library. This will result in separate C and Java libraries of secure

IoT code.

6

2 Project Plan

2.1 TASK DECOMPOSITION

Below is a list of our planned tasks, and some of the steps required within each task to complete it.

Some tasks require specific steps, whereas others require more open-ended research and data

collection. Most tasks build upon the knowledge found in the first task of general research.

● General Research

○ Team introductions

○ Vulnerabilities

○ SV-COMP

○ IoT code

○ Code libraries versus frameworks

○ Code verification tools

● Identify Milestones

○ Discuss with advisor and client

○ Have a clear end-goal decided on

○ Develop a Gantt chart

○ Verify milestones with advisor and client

● Identify IoT Libraries for use - the team will be testing many libraries throughout the

project

○ Create library benchmarks - based on data found in general research

○ Create IoT code benchmarks - based on data found in general research

○ Research available IoT libraries based on determined benchmarks

○ Choose a select amount of libraries for use

● Identify verification properties to test

○ Research which properties are tested often - knowledge of vulnerabilities from

general research used

○ Choose properties not tested as often - partially based on IoT libraries decided

upon

● Set up SV-COMP

○ Get access to an ISU virtual machine (each team member)

○ Decide on SV-COMP tools to use for Java - based on knowledge from general

research

○ Set up SV-COMP on virtual machines - uses knowledge from general research

● Design Java Verification Tasks

○ Use example verification tasks for guidance

○ Use knowledge of decided upon SV-COMP tools

○ Use knowledge of SV-COMP

○ Create based upon decided security properties to test

● Design C Verification Tasks

○ Use knowledge from created Java verification tasks

● Run Verification Tasks

7

○ Use knowledge of SV-COMP

○ Plug in IoT libraries previously decided upon

○ Verify libraries based on previously chosen security properties

● Build SV-COMP

○ Use the virtual machines each member has access to

○ Compile and run previously created verification tasks in the already set up SV-

COMP environment

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

For our project we have identified the following risks and risk mitigation plans:

Licensing Issues - a few IoT platforms require capital to use. Our mitigation strategy for this is to

use open source IoT code and libraries.

Inadequate Design - a risk associated with a misunderstanding of the project's goals. Our

mitigation strategy is to define our project problem and our statement and use those definitions to

expand on our design of our project.

Team Dynamics - a risk with any project that has a team. Our mitigation strategy is to have weekly

team meetings, address issues as the arise and be proactive.

Developing wrong software functions - this risk can come from miscommunication or

misunderstanding of the project requirements. A mitigation strategy for this risk is to have code

peer reviewed and have weekly team meetings to go over functions that are required for our task.

Gold Plating - adding more features to a product that the client did not ask for. Our mitigation

strategy for this is to keep within our project plan and use our weekly client meetings to stay within

the scope.

Incompatible Libraries - we may run into a library that requires too much time to ‘round’ off. One

way to mitigate this is to look for standard libraries in addition to checking libraries versus library

definition.

Incompatible IoT Code - code that is heavily library dependent requires too much time to properly

‘round’ off to run as a validation task. Our mitigation strategy is to look for good IoT code

commonly used in IoT and use that as a comparison tool with other IoT code to validate.

Time Constraints -as we run these verification runs our system will have to do model checking.

This takes real time and since we have limited ram it may take a full day or more to run a

verification run. Our mitigation strategy for this is to set soft limits for verification runs. For

example, a normal run would be considered <24hrs, but anything >24hrs we will consider as an

unknown failure.

8

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

There are currently seven milestones for this project, and each of them fall under a specific

deliverable. The first milestone falls within the deliverable, “Project Research”, and is described as

being met once we have sufficiently researched key materials related to our project abstract. The

second milestone is met once the team has identified both the milestones and timelines of the

project. This falls under the “Prepare Project Plan” deliverable. The third milestone, within the “Set-

up SV-COMP” deliverable, is met once the team builds the SV-COMP environment, and is able to

run verification tasks against IoT libraries. The fourth milestone is achieved once the team has

successfully completed designs for verification tasks that run against C Iot code. The fifth milestone

is the same as the fourth except that it will be running against Java IoT code. The sixth milestone

combines both the C and Java verification tasks completed in the previous two milestones and is

used against common IoT libraries the team finds. Finally, the seventh milestone will be completed

once we compile all of the benchmarks made from the previous milestone and construct a

verifiably secure IoT library. The first two milestones are evaluated by all of the team members, and

are considered completed once we are satisfied with the work put into them. The remaining five

milestones will also be evaluated by all team members, but will rely more heavily on the

functionality of our designs.

2.4 PROJECT TIMELINE/SCHEDULE

Our Gantt chart is still a work in progress as we continue to discover new requirements and

difficulties. This being said, our schedule plans long periods of time for the tasks that we think may

uncover new difficulties and will take the longest. These long periods of time will allow us to break

them down into smaller tasks. This way the project end date will not be delayed.

9

Introduce Team and Project (8/24/2020 - 8/31-2020) - In this section we introduced ourselves to

our team, client, and advisor. We also were given a summary of what our project would consist of.

As a team, we decided when meetings would be and set internal roles and responsibilities.

General Research (8/31/2020 - 9/8/2020) - We were assigned research topics by our advisor to

understand our project in a further manner. We created slides containing our research and

additional questions we had. These questions turned into further research.

Identify Milestones (8/31/2020 - 9/8/2020) - After being given an overview of the project we

brainstormed general milestones that our team could use to guide our project. Though we came up

with a set of milestones, we all agreed that this would continue when new goals arose.

Identify IoT Libraries for use (9/8/2020 - 4/15/2021) - One major portion of our project is to

identify IoT libraries that we may use for verification tasks. This milestone started by identifying

criteria that we may consider before picking a library. It continues to 4/15/2020 because we will

continue to pick and choose new libraries as we continually design verification tasks.

Identify verification properties to test (9/8/2020 - 4/15/2021) - Verification properties are the

properties that we test in a library to determine if it meets certain criteria (in our case, security).

Verification properties will continually be edited as we consider new libraries. Because we are also

considering new libraries until 4/15/2021, we must also identify new verification properties until

this same time.

Get / Set up SV-COMP (9/22/2020 - 10/13/2020) - Our team must request and set up virtual

machines such that SV-COMP and other testing tools may run. This time period is 3 weeks because

we must wait on the ISU IT department to give us access to these VMs.

10

Design Verification Tasks for Java (10/13/2020 - 4/15/2021) - Our team must use the chosen

libraries to design verification tasks to run in SV-COMP. These verification tasks will be written on

libraries specifically in Java. As we pick new libraries we will also need to write new verification

tasks for these libraries. Since we will be considering libraries until 4/15/2021, we must also write

new verification tasks until this point.

Design Verification Tasks for C(10/13/2020 - 4/15/2021) - Our team must use the chosen libraries

to design verification tasks to run in SV-COMP. These verification tasks will be written on libraries

specifically in C. As we pick new libraries we will also need to write new verification tasks for these

libraries. Since we will be considering libraries until 4/15/2021, we must also write new verification

tasks until this point.

Run Verification Tasks (11/24/2020 - 5/1/2021) - As our team writes verification tasks we will

continually be running and testing them to make sure of completion. This process has a potential

to take a long time and thus takes up most of our allotted schedule. After 4/15/2021 (When no new

libraries will be chosen by our team), we will continually develop with the libraries that we have in

our hands at that time. By 5/1/2021 we wish to have all verification tasks for the libraries in a

complete state.

Build SV-COMP (11/24/2020 - 5/1/2021) - Verification tasks will be compiled and run in the SV-

COMP environment. As verification tasks are completed - they will also be ran in the SV-COMP

environment.

2.5 PROJECT TRACKING PROCEDURES

The group has decided to utilize a waterfall method and a gantt chart to track the progress of the

project in its various stages. The Waterfall model will be used to make sure that all members are

aware of what parts of the project are being worked on at what time. Should additional information

force the group to focus on one specific project within the project, additional time will be allocated

within the waterfall model so that everything is kept on track for our deliverable due date.

The Gantt chart will give a detailed breakdown of what parts of the project have been completed,

and how much longer the group must work on that particular area of the project. The chart will be

updated during every meeting, and will be an accurate depiction of the progress that has been

made.

11

2.6 PERSONNEL EFFORT REQUIREMENTS

2.7 OTHER RESOURCE REQUIREMENTS

We will be using virtual machines provided by the university to run our SV-COMP and do our

model checking.

2.8 FINANCIAL REQUIREMENTS

All code and virtual machines are provided via the university, and all code is personally made or

publically available. As such, currently, the project requires no financial support in order to

proceed.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

SV-COMP [2] SV-

COMP is a competition whose goal is to publicly efficiently test and verify software. SV-COMP

works to create and maintain a set of programs and security properties. These properties are made

publicly available for researchers and developers. Our project revolves around using these

properties (and making new ones) in order to build a list of security tested libraries.

CWE [1]

 CWE is a website that contains all of the most common software weaknesses and

vulnerabilities. Each year the list is updated with a new set of common weaknesses. Our project will

involve taking some of these weaknesses and determining if a new security property should be

developed.

12

3.2 DESIGN THINKING

There are a few aspects that shaped our design:

Create Verification tasks. Our team needs to create and expand on current verification tasks

listed in SV-COMP. We may use the following definition for a verification task: A set of code that

checks a library for a security property.

Find libraries to run verification tasks on. Our team needs to put together a list of IoT libraries

that we are able to run verification tasks on. A library is defined as a set of prebuilt code that allows

a developer to call or use some functionality of. A library is different from a framework. A

framework is defined as prebuilt code that controls the flow of the program. A library differs from

this such that a developer can use it whenever they choose. Iot code is defined as any code that can

be used to build an IoT device or has functionality that may assist in building an IoT application.

After considering these design aspects we were able to make a few more design choices that came

up during the ‘ideate’ phase:

What languages are our libraries in? The IoT libraries that we will be focusing on are in C and

Java. This decision was made because SV-COMP only has categories for these two languages. In the

future, as SV-COMP expands, we may also expand our language selection.

What security properties will we cover? There are many security properties that are already

listed in SV-COMP. Our team will look at the Common Weakness Enumeration (CWE) website

and compare the weaknesses listed there that might relate to security. In the end, we will have a

comprehensive list of properties that encompass SV-COMP and CWE.

3.3 PROPOSED DESIGN

The proposed design should consist of four key steps that involve project planning, requirement
analysis, use cases, and deliverables. So far, we have implemented the use of project planning.
Additionally, we have come up with desired requirements, use cases, and deliverables. Now that we
have our VMs set up, we can begin actually implementing code to fulfil our use cases, deliverables,
etc. This design satisfies the functional and non-functional requirements as those requirements are
listed in the Design Plan in 3.7.

3.4 TECHNOLOGY CONSIDERATIONS

Highlight the strengths, weakness, and trade‐offs made in technology available.

Discuss possible solutions and design alternatives

3.5 DESIGN ANALYSIS

– Did your proposed design from 3.3 work? Why or why not?

13

– What are your observations, thoughts, and ideas to modify or iterate over the design?

3.6 DEVELOPMENT PROCESS

Our team will be using the waterfall model for our development process for this project. This is
largely due to the fact that we are having to slowly learn/alter our project goals as we move
forward. It is important for us to fully check in with our client at each step of the way so as to
ensure that we are on the right track.

3.7 DESIGN PLAN

Our Design Plan follows four overall steps which can each contain substeps. The four main steps
are as follows: project planning, analysing requirements, identifying use cases, and producing
deliverables. Three out of the four main steps are made up of varying amounts of substeps. These
steps and substeps are outlined in the diagram below.

14

15

4 Testing

Testing is an extremely important component of most projects, whether it involves a circuit, a
process, or software.

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study or acceptance testing for functional and non-functional requirements).
2. Define/identify the individual items/units and interfaces to be tested.
3. Define, design, and develop the actual test cases.
4. Determine the anticipated test results for each test case

5. Perform the actual tests.
6. Evaluate the actual test results.
7. Make the necessary changes to the product being tested

8. Perform any necessary retesting
9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you have

determined.

4.1 UNIT TESTING

Once we have created our verification tasks, each of the security property tasks for Java and C will
need to be tested. So far we have chosen the following security properties to test: Improper Input
Validation, Out-of-bounds Read and Write, Integer Overflow, Improper Authentication, and Null
Pointer Dereference. For each of the properties, we will need unit tests for C and Java to make sure
each verification task catches the edge cases for the related vulnerabilities. Another part of our
project is setting up an environment of SV-COMP. Some testing will be required to make sure that
the environment is set up correctly. Since we also will have to round out some of the IoT libraries
that we pull, testing will be conducted to show that functionality of those libraries has not changed.

4.2 INTERFACE TESTING

BenchExec is the main interface that is used in our project. It is an interface that is not developed
by us, but is simply being used to run simulations. Being that it was not developed by us, we will
not be testing it. BenchExec will be the program that is used to test our tools as well as our IoT
code.

16

4.3 ACCEPTANCE TESTING

In order to demonstrate that the design requirements are being met, we will conduct black-box
testing. This way we can show through the user perspective if there are any discrepancies based on
the specifications. It also helps with having an objective perspective and avoids developer bias. By
conducting acceptance testing through the black box method, it will be in terms that are quickly
understood by everyone, including the client.

4.4 RESULTS

We have not begun testing as we have yet to create any tasks or pull in IoT code.

5 Implementation

Describe any (preliminary) implementation plan for the next semester for your proposed design in

3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best

plan of action (or solution) to achieving your goals and indicate why this surpasses all other

possible solutions tested.

6.2 REFERENCES

[1] Cwe.mitre.org. 2020. CWE - Common Weakness Enumeration. [online] Available at:
<https://cwe.mitre.org/> [Accessed 25 October 2020].

[2] sv-comp.sosy-lab.org. 2020. SV-COMP 2021. [online] Available at: <https://sv-comp.sosy-
lab.org/2021> [Accessed 25 October 2020]

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

https://sv-comp.sosy-lab.org/2021
https://sv-comp.sosy-lab.org/2021

17

If you have any large graphs, tables, or similar data that does not directly pertain to the problem

but helps support it, include it here. This would also be a good area to include hardware/software

manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,

Software bugs etc.

