
Team Information - SDMay21-41

Problem Statement / Solution

Design Approach

Technical Details
Design Requirements / Standards

TestingIntended Users/Uses

Client
Megan Ryan

Faculty Advisor
Dr. Kristin Rozier

Team Members
Joshua French jkfrench@iastate.edu CPR E
Vincent Johnson vincentj@iastate.edu S E
Jordan McKillip jmck1998@iastate.edu S E
Marcus Reecy mjreecy@iastate.edu CYB E

Functional Requirements
- Written and tested within the C programming language
- Model-checking is done on 4 cores, 8 gb RAM, and 15 min. run time
- Should not require any special software on the competition

machines
Non-Functional Requirements
- Remains free of unnecessary data, with only the core code and

descriptions within the code
- The software reports its version within the readme and other

documentation
Relevant Standards
- IEEE 802.11ai-2016 - initial setup methods and their security.
- IEEE 1012-2016 - verification and validation of systems, software,

and hardware life cycles
- IEEE P2933 - creating a framework for IoT data and device

interoperability in the clinical region that incorporates the values
of TIPPSS

The testing environment that will be used is called Benchexec. It is
used by SV-COMP to run their benchmarks on tools while measuring
their performance. The testing for this project primarily involves
model-checking the created IoT-benchmarks that have been
created. The results of the testing will tell whether the IoT code that
was run through the model-checkers is secure in various
IoT-security properties. We recorded these results in our Results
Spreadsheet (Figure 2).

Problem
The Internet of Things (IoT) is becoming more and more a part of
people’s everyday lives. Devices such as locks, cameras, and
smart-speakers are just a very small view of all the ways our lives are
going online. With all of these devices having important roles, being
located in private places, and gathering loads of information, the
security of them is much more prevalent as it would be problematic if
it got into the wrong hands. There are already some ways that the
security of the code behind these IoT devices is being tested. However,
there are a lot of security properties that aren’t being thoroughly
checked. Our project will create a set of IoT benchmarks and utilize
the top three tools and and security properties to verify said
benchmarks. This will allow future competitions to validate IoT code.

Proposed Solution
SV-COMP is a security validation competition that aims to make model
checking tools competitive with each other over many different
software security properties. Benchexec, which is used in SV-COMP,
helps to compare different software verification tools. These tools test
a variety of common security failings to ensure that the software can
be validated and secure for any developing needs regarding the
compatible c software. Our project is to use and expand the SV-COMP
technologies to focus on IoT device code and test different IoT
libraries.

The final goal of this project is to create a set of IoT benchmarks using
existing IoT libraries that we deem secure. SV-COMP may then use this
secure set to aid in validating tools against IoT code. Additionally,
future users may follow our documentation to expand / validate their
own IoT libraries.

The intended users of this
software project will be
developers and academia
of IoT. Users will be able
to create their own
benchmarks following the
detailed analysis that has
been implemented within
the project repository.

SV-COMP: The software verification competition in which our project was
derived from. A suite of software model checkers take input benchmarks
(Java and C code), an expected result (.yml), and a security property (LTL
formula) and output the results via Benchexec.

Benchexec: runs the model checkers - gives the ability to specify
resource limits, measure memory usage of the tool, and verify the result
with the expected value.

Benchmark: a piece of IoT software code that is refactored to run with
the suite of model checkers. Our project focused mainly on C code.

Security Property: an LTL formula that the model checker follows in
order to determine if the benchmark meets the property.

Model Checkers:
- CpaChecker(CPA-SEQ): The model checker with the best results for

the no overflows category.
- PredatorHP: The model checker with the best results for the

memory safety category.
- VeriAbs: The model checker with the best results for the reach safety

category.

Figure 1: Concept Sketch

Figure 2: Results Spreadsheet

Figure 3: IoT Benchmark

Figure 4: .yml file for benchmark, listing the
property and expected outcome

Figure 5: Security Property with LTL
formula

mailto:jkfrench@iastate.edu
mailto:vincentj@iastate.edu
mailto:jmck1998@iastate.edu
mailto:mjreecy@iastate.edu

