
IoT Security Validation
Joshua French, Vincent Johnson, Jordan McKillip, Marcus Reecy

Megan Ryan

Kristin Rozier

Project Vision

The world of Internet of Things (IoT) grows every day into more and
more private aspects of our lives. Securing these devices is incredibly

important and our project contributes to doing exactly that.

IoT: The network of physical devices that are embedded with sensors,
software and other pieces of hardware for the purpose of connecting

and exchanging data with other devices and systems over the
internet.

Project (SV-COMP)

● SV-COMP (Software Verification Competition)
○ A competition aimed at driving invitation for methods, technologies and tools

that verify software
○ Not focused on IoT/Security, but tools are applicable

● Benchmarks: Code that is built to be tested and verified with different verification
tools

● Verification Tools: Programs that are designed to test the different security
properties and determine the security of a given application

System Design

System Design - Use Case Diagram

CWEs

● Common Weakness Enumeration: A category of system for software
weaknesses and vulnerabilities. Part of a wider goal to understanding flaws in
software

● Memory Safety
• CWE-119: Improper Restrictions of Operations within the Bounds of a

Memory Buffer
● Reach Safety

• CWE-200: Exposure of sensitive information to an unauthorized Actor
● No Overflow

• CWE-121: Stack-based buffer overflow

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/121.html

Engineering Requirements
• Functional

• Each tool can:
• Report its own version
• Report result of each security property
• Can be implemented and compiled using the SV-COMP standard computer

• Non-functional

• Can be downloaded, replicated, and evaluated

• Can be archived in a ZIP file

• File packages should contain all required libraries

• File packages should contain no unnecessary data, code, etc.

• Technical and/or other constraints

• Written in C

• IoT libraries modified such that the tool can assess properties.

Engineering Constraints

• Utilization of the tools requires a lot of time
• Average time for a single run could take up to 15 minutes.

• Size of files paramount - larger files take longer to run
• To run benchexec and tools:

• Ubuntu 18.04, with at minimum, a memory limit of 15 GB (14.6 GiB) of RAM
and a limit to 8 processing units of a CPU conforming to standard SV-COMP
guidelines

• Required software:
• GCC, make, python3, Benchexec, SV-COMP tools

Selecting Security Properties

● The original security properties chosen based on the following:

○ Far reaching, exploitive, and examples have documentation (Within CWE)

● No overflow: Protecting against overflows to write into restricted code(Signed
ints and their overflow that cannot be allowed to be present within a program)

● Reach safety: Checking to see if function calls are reachable within the program

● Memory safety: A set of memory safety property that is a conjunction of valid
memory cleanup, valid-deref, valid free, and valid memtrack.

Selecting Software Verification Tools

● Tools were chosen as the recorded best to test these particular properties

○ Influenced by 2021 SV-COMP

● Predator HP: Best for Memory Safety category

● VeriAbs: Best for Reach Safety category

● CPAChecker: Best for No-Overflow category

Creating a Verification Task

● Choose benchmark code (library or device code)
● Some benchmarks we created entailed using the entire library, while others

entailed using only a few methods.
● Refactor code to fit run by itself (without external libraries) and replace

inputs with model checker input:

Supporting Files

● Import benchmarks into benchmark directory (with license information)
● Create a .yml file for the benchmark

● Create README / Makefile in directory (Required to run in SV-COMP)
● Create a .set file containing the below to specify which benchmarks to run

Compiling the Benchmark

● Compile the benchmark files with Benchexec exceptions using make
○ This is the stage may contain errors you need to fix

● Create .i files
○ gcc -E <.c file> -o <.i file> -P -m64

● Verify the integrity of the benchmarks using python script
○ python check.py

Using the Benchmark

• Download the archived tools from SV-COMP and unzip in directory
• In ../bench-defs/benchmark-defs/<tool>.xml

• Check to make sure hardware specifications are the same for your machine
• Create run definitions to run your benchmarks:

• Return to unzipped tool directory and run:

../bench-defs/benchmark-defs/<tool>.xml -r <run-definition-name>

Verification Run:
LightBlueLatch_Sensor

Verification Run: MQTT_num_rem_len_bytes

Project Statistics

• 36 benchmarks produced
• 18 Considered “Patched” - (No errors expected)
• 18 Considered “Vulnerable” - (Property errors expected)

• Each tested with 4 properties
• Tested with 3 different tools

Coding Results

Technical Challenges

• Getting SV-COMP / tools running
• VM limitations required constant testing

• Analyzing libraries / creating benchmarks from them
• Making benchmarks runnable

• Had to have them meet SV-COMP standards
• Creating our own properties

Technical Challenges cont.

• Some tools are more successful at testing certain properties than others
• Some benchmarks may error out with some tools

Conclusions

• IoT devices are some of the most insecure devices on the market right now. Our
project, along with SV-COMP, gives the opportunity to verify that the device
software you are using is not vulnerable to any software related issues.

• We are currently working on getting our project and benchmarks submitted to
SV-COMP for potential use in their competitions.

• We hope our project contributions may lead to future additions to SV-COMP to
make it more relevant to IoT security.

Team Contributions

• Jordan McKillip
• Developer/Website

• Joshua French
• Developer

• Vincent Johnson

• Project Lead/Developer

• Marcus Reecy

• Developer/Website

